
StochJuMP – Parallel algebraic modelling for
stochastic optimization in Julia

Cosmin G. Petra

Argonne National Laboratory

petra@mcs.anl.gov

Joey Huchette, Miles Lubin

MIT Operations Research Center

PASC15 Conference
June 1, 2015

mailto:petra@mcs.anl.gov

Outline

 Motivating applications: energy applications

 Parallel optimization solvers for stochastic optimization

– PIPS solvers suite @ Argonne

– Computational pattern of stochastic optimization

 Modelling stochastic optimization on HPC platforms

– JuMP – algebraic modelling language for optimization embedded in Julia

– StochJuMP extension of JuMP for parallel modelling

– Technical details and numerical experiments

2

Stochastic optimization

 Optimization under uncertainty: take an optimal decision now that depends on

future, uncertain events (random variable)

 Stochastic optimization: the “now” hedges against all possible realizations of the
randomness (by minimizing the expectation of the cost).

3

Electricity generation and dispatch under uncertainty

4

The sharp drops in wind power need to be
forecasted well in advanced to give the thermal
generators enough time to ramp up production.

Wind forecasting results in wind scenarios,
requiring stochastic optimization

Two-stage stochastic programming with recourse

 Wide range of applications

 In energy: power grid/ natural gas operations, N-1 contingency analysis,
generation expansion, transmission planning, etc

5

Wind/solar (stochastic) economic dispatch model

6

Large-scale (dual) block-angular LPs

7

After taking a finite samples, problem reduces to a large deterministic problem
known as extensive form

Large instances with 1000s of scenarios could have billions of variables and
constraints, requiring memory distributed parallel computing.

8

Parallel optimization solver(s)

PIPS solvers

 PIPS-IPM – stochastic LPs and convex QPs

– Mehrotra predictor-corrector interior-point method (IPM)

 PIPS-S – dual block-angular LPs (includes stochastic LPs)

– Parallel implementation of revised dual simplex

 PIPS-NLP – stochastic NLPs

– Reuses PIPS-IPM linear algebra

– Inertia-free filter method (Chiang and Zavala, 2014)

– Various structure-exploiting implementations (network, PDEs, etc)

 Parallelization obtained at the linear algebra level

9

Parallel interior-point method implementation – PIPS-IPM

10

 When using an interior-point method to solve the extensive form, the
linear systems are structured

arrow-shaped linear systems

(modulo a permutation)

The matrix is the Schur-complement
of the diagonal block.

Schur complement decomposition of linear algebra

11

Block elimination

Parallel computational pattern

12

Fact Backsolves

Fact Backsolves

Fact Backsolves

C
o
m
m

Dense fact backsolve

MPI_Allreduce

1

p

i

i

C C

C
o
m
m

MPI_Allreduce

1

p

i

i

r

forw.subst. Dense solve

Dense fact backsolve

Dense fact backsolve

forw.subst. Dense solve

forw.subst. Dense solve

(implicit) factorization triangular solve

Rank 1

Rank 2

Rank p

Computations replicated

1

1

T

i i

S

i

iiC B K B

 c

T

c cD LL C
\i iL r 0C\ r

\T

i iL r

Weak scaling efficiency – Titan @ Oak Ridge National Lab

13

Largest instance has 4.08 billion decision variables and 4.12 billion constraints.

Strong scaling – Titan and “Piz Daint” (@ Swiss National
Computing Center)

14

The instance used in the XK7 runs has 4.08 billion decision variables
and 4.12 billion constraints.

15

Structure-exploiting solvers generally scale.

 How about modelling?

Modelling structured optimization problems on high
performance computing (HPC) platforms

 Algebraic modelling language/framework

– easy-to-express syntax, similar to the mathematical abstractions

– “high performance”

• scalable and efficient models generation in parallel (data distributed and localized)

• code speed – ideally C/Fortran speed

• minimum I/O

– transparently passes structure to the optimization solver

– quick development; easy to specialize and/or extend

– plug-and-play with optimization solvers (generally Fortran, C, C++ codes)

 Existing modelling frameworks with parallel capabilities: SML (Grothey et al.,
2009), PySP (Watson et al, 2012), PSMG (Qiang and Grothey, 2014)

16

Our approach is to extend JuMP

 JuMP - open-source algebraic modeling language for mathematical programming
embedded in Julia (Miles Lubin, Iain Dunning, Joey Huchette – MIT)

 Solver-independent, extensible, domain-specific language with “optimization
syntax”

 JuMP exploits advanced language features of Julia

– Metaprogramming, not operator overloading

– Just-in-time compilation

– Excellent connections to C/Fortran libraries

– Optional typing, multiple dispatch

17

JuMP’s expressiveness and speed

18

StochJuMP - parallel algebraic modeling for stochastic
optimization

 Technical approach: built as an extention on top of JuMP – very little extra code

 Uses JuMP’s extension system to reuse data structures (and code!)

– Each scenario subproblem is a JuMP model

 Minimal language constructs: StochasticModel, StochasticBlock

 Generic: usable with any solver, given backend glue code

19

The full stochastic economic dispatch model for the State
of Illinois

20

Parallel model generation and interfacing with PIPS-IPM

 Data is localized: processes only generate data for scenarios assigned to them.

1. Convert abstract JuMP model to problem data (before calling out to PIPS-IPM)

2. Construct thin Julia wrapper functions to copy local data to PIPS buffers

3. Initialize PIPS-IPM and provide the MPI communicator

4. Pass “C” functions to PIPS-IPM via cfunction

5. Call PIPS-IPM solve function

6. Post-solve analysis (in Julia)

21

22

That’s it! No Magic.

- 300 lines of Julia code
- 2 weeks of work, but only because the 2014 World Cup was in progress

Computational results

23

Modelling also scales.

Figure: Weak scaling study from 4 to 2048 cores

Computational results - continued

24

Model generation always less than 1.5% of solve time (and typically less)

Future work

 Extending StochJuMP to nonlinear stochastic optimization

– Automatic differentiation is needed (already in place in JuMP)

 Develop other domain specific (modelling) languages in Julia/JuMP

– dynamic optimization (a.k.a optimal control)

25

26

Thank you for your attention!

Questions?

Additional slides

27

Economic dispatch models

 Basis for the electricity distribution and electricity market

 Answers critical questions such as:

– What is the cheapest way to ramp-up generation to satisfy a foreseen increase in demand
given the grid transmission limits imposed?

– What are the electricity prices at each demand node given a certain demand?

28

